Use luzes para desenhar polígonos

Página atualizada :
Data de criação de página :

resumo

Luzes (fontes de luz) são usadas para sombrear os polígonos.

ライトを使用してポリゴンを描画する

Ambiente operacional

Pré-requisitos

Versões do XNA suportadas
  • 4.0
Plataformas suportadas
  • Windows (XP SP2 ou posterior, Vista, 7)
  • Xbox 360
  • Windows Phone 7
Versão do sombreador de vértice necessária para Windows 2.0
Versão do sombreador de pixel necessária para Windows 2.01

Ambiente operacional

plataforma
  • janelas 7
  • Xbox 360
  • Emulador do Windows Phone 7

substância

Sobre as luzes

Aqui estão algumas coisas que você pode fazer sobre o uso das luzes.

material

Em termos simples, um material é a cor de uma substância. Os materiais são frequentemente usados em conjunto com Luzes, e BasicEffects também permite que você defina parâmetros de material e luz. No entanto, isso não se aplica se você estiver escrevendo seu próprio programa de sombreamento e puder ajustá-lo livremente. Além disso, observe que a cor do material é diferente da cor dos vértices.

Os materiais geralmente têm os seguintes itens.

Difuso Cores básicas das substâncias
Ambiente A cor da cor quando exposta à luz ambiente (visível mesmo que a luz não incida diretamente sobre ela)
Especular Luz de reflexão especular (brilha fortemente como o brilho de um carro, etc.)
Poder especular Força reflexiva (força especular)
Emissivo Luz divergente (brilha sozinha)

Luzes e normais

Se você quiser usar uma luz, precisará de algo chamado "normal". A posição da luz em relação à normal determina o brilho do objeto. O normal será definido como dados de vértice.

面の方向と明るさ

É mais claro se o rosto estiver voltado para a direção da luz e mais escuro se for o contrário. Isso também é verdadeiro se você substituir a direção da face por um vértice. A orientação dessas faces e vértices é chamada de "normal".

Agora, a direção das normais não está explicitamente definida e há duas normais principais a serem definidas na caixa: abaixo.

面の方向と明るさ

Há uma diferença entre a esquerda e a direita quando a luz é aplicada.

No caso do método à esquerda, o espaço entre as faces parecerá angular. Isso ocorre porque ele é completamente orientado na mesma direção que o normal do rosto. No entanto, esse método tem a desvantagem de que os vértices não podem ser compartilhados.

Com o método à direita, o espaço entre as superfícies aparecerá ligeiramente arredondado dependendo de como a luz é aplicada. Como os vértices são compartilhados, há uma vantagem de que a quantidade de dados é reduzida. A desvantagem é que a normal do vértice não é a mesma que a direção da face, portanto, mesmo que a luz brilhe diretamente de cima, por exemplo, a superfície superior não será 100% afetada pela luz.

É difícil de entender, mesmo se você explicar em uma frase, então verifique o diagrama abaixo para ver a diferença.

面の方向と明るさ面の方向と明るさ
Ele é exibido com um software de modelagem chamado Metasequoia

Você pode ver que é bem diferente na aparência. No exemplo, criaremos a caixa da maneira correta para que o código não seja redundante.

campo

/// <summary>
/// 基本エフェクト
/// </summary>
private BasicEffect basicEffect = null;

/// <summary>
/// 頂点バッファ
/// </summary>
private VertexBuffer vertexBuffer = null;

/// <summary>
/// インデックスバッファ
/// </summary>
private IndexBuffer indexBuffer = null;

/// <summary>
/// インデックスバッファの各頂点番号配列
/// </summary>
private static readonly Int16[] vertexIndices = new Int16[] {
    2, 0, 1, 1, 3, 2, 4, 0, 2, 2, 6, 4, 5, 1, 0, 0, 4, 5,
    7, 3, 1, 1, 5, 7, 6, 2, 3, 3, 7, 6, 4, 6, 7, 7, 5, 4 };

A caixa é criada usando um buffer de vértice e um buffer de índice.

criação

// エフェクトを作成
this.basicEffect = new BasicEffect(this.GraphicsDevice);

// エフェクトでライトを有効にする
this.basicEffect.LightingEnabled = true;

// デフォルトのライトの設定を使用する
this.basicEffect.EnableDefaultLighting();

// スペキュラーを無効
this.basicEffect.SpecularColor = Vector3.Zero;

// 2番目と3番目のライトを無効
this.basicEffect.DirectionalLight1.Enabled = false;
this.basicEffect.DirectionalLight2.Enabled = false;

Há vários itens no BasicEffect que definem a luz.

Primeiro, defina a propriedade LightingEnabled como true para instruir a luz a ser calculada.

Quando você chama o método EnableDefaultLighting , a cor da luz ou do material é definida automaticamente. No entanto, usar a luz padrão nesta caixa é muito brilhante, então desativei a cor especular e desativei a segunda e a terceira luzes.

// 頂点の数
int vertexCount = 8;

// 頂点バッファ作成
this.vertexBuffer = new VertexBuffer(this.GraphicsDevice,
    typeof(VertexPositionNormalTexture), vertexCount, BufferUsage.None);

// 頂点データを作成する
VertexPositionNormalTexture[] vertives = new VertexPositionNormalTexture[vertexCount];

vertives[0] = new VertexPositionNormalTexture(
    new Vector3(-2.0f, 2.0f, -2.0f),
    Vector3.Normalize(new Vector3(-1.0f, 1.0f, -1.0f)),
    Vector2.Zero);
vertives[1] = new VertexPositionNormalTexture(
    new Vector3(2.0f, 2.0f, -2.0f),
    Vector3.Normalize(new Vector3(1.0f, 1.0f, -1.0f)),
    Vector2.Zero);
vertives[2] = new VertexPositionNormalTexture(
    new Vector3(-2.0f, 2.0f, 2.0f),
    Vector3.Normalize(new Vector3(-1.0f, 1.0f, 1.0f)),
    Vector2.Zero);
vertives[3] = new VertexPositionNormalTexture(
    new Vector3(2.0f, 2.0f, 2.0f),
    Vector3.Normalize(new Vector3(1.0f, 1.0f, 1.0f)),
    Vector2.Zero);
vertives[4] = new VertexPositionNormalTexture(
    new Vector3(-2.0f, -2.0f, -2.0f),
    Vector3.Normalize(new Vector3(-1.0f, -1.0f, -1.0f)),
    Vector2.Zero);
vertives[5] = new VertexPositionNormalTexture(
    new Vector3(2.0f, -2.0f, -2.0f),
    Vector3.Normalize(new Vector3(1.0f, -1.0f, -1.0f)),
    Vector2.Zero);
vertives[6] = new VertexPositionNormalTexture(
    new Vector3(-2.0f, -2.0f, 2.0f),
    Vector3.Normalize(new Vector3(-1.0f, -1.0f, 1.0f)),
    Vector2.Zero);
vertives[7] = new VertexPositionNormalTexture(
    new Vector3(2.0f, -2.0f, 2.0f),
    Vector3.Normalize(new Vector3(1.0f, -1.0f, 1.0f)),
    Vector2.Zero);

// 頂点データを頂点バッファに書き込む
this.vertexBuffer.SetData(vertives);

É um código um pouco longo, mas cria dados de vértice. A estrutura de dados de vértice usada desta vez é "VertexPositionNormalTexture" com dados de "posição", "normal" e "coordenadas de textura". Como o XNA Framework não fornece uma estrutura apenas com "position" e "normal", "Vector2.Zero" é especificado para todos os vértices para coordenadas de textura. (Claro, se você entender, você pode fazer sua própria estrutura.)

Quanto ao normal, conforme mostrado na figura anterior, ele é definido para apontar em uma direção oblíqua. Como as normais são definições de dados representadas apenas pela orientação, a direção é especificada e, em seguida, normalizada com o método Vector3.Normalize.

VertexPositionNormalTexture construtor

Crie uma instância da estrutura "VertexPositionNormalTexture" com dados de vértice para a posição e coordenadas normais e de textura.

posição Vetor 3 Posição do vértice
normal Vetor 3 Normais de vértice
textureCoordinate Vetor 2 Coordenadas de textura de vértices

Vector3.Normalize método

Cria um vetor unitário a partir do vetor especificado.

valor Vetor 3 Vetor de origem para normalizar
Valores retornados Vetor 3 Vetor unitário
// インデックスバッファを作成
this.indexBuffer = new IndexBuffer(this.GraphicsDevice,
    IndexElementSize.SixteenBits, 3 * 12, BufferUsage.None);

// 頂点インデックスを書き込む
this.indexBuffer.SetData(vertexIndices);

A criação de um buffer de índice não é diferente.

desenho

// 描画に使用する頂点バッファをセット
this.GraphicsDevice.SetVertexBuffer(this.vertexBuffer);

// インデックスバッファをセット
this.GraphicsDevice.Indices = this.indexBuffer;

// パスの数だけ繰り替えし描画
foreach (EffectPass pass in this.basicEffect.CurrentTechnique.Passes)
{
    // パスの開始
    pass.Apply();

    // ボックスを描画する
    this.GraphicsDevice.DrawIndexedPrimitives(
        PrimitiveType.TriangleList,
        0,
        0,
        8,
        0,
        12
    );
}

Como as informações de vértice são definidas com antecedência, não há nada de especial no código de desenho.

Todos os códigos

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Audio;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.GamerServices;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
using Microsoft.Xna.Framework.Media;
#if WINDOWS_PHONE
using Microsoft.Xna.Framework.Input.Touch;
#endif

namespace BoxReceivedLight
{
    /// <summary>
    /// ゲームメインクラス
    /// </summary>
    public class GameMain : Microsoft.Xna.Framework.Game
    {
        /// <summary>
        /// グラフィックデバイス管理クラス
        /// </summary>
        private GraphicsDeviceManager graphics = null;

        /// <summary>
        /// スプライトのバッチ化クラス
        /// </summary>
        private SpriteBatch spriteBatch = null;

        /// <summary>
        /// 基本エフェクト
        /// </summary>
        private BasicEffect basicEffect = null;

        /// <summary>
        /// 頂点バッファ
        /// </summary>
        private VertexBuffer vertexBuffer = null;

        /// <summary>
        /// インデックスバッファ
        /// </summary>
        private IndexBuffer indexBuffer = null;

        /// <summary>
        /// インデックスバッファの各頂点番号配列
        /// </summary>
        private static readonly Int16[] vertexIndices = new Int16[] {
            2, 0, 1, 1, 3, 2, 4, 0, 2, 2, 6, 4, 5, 1, 0, 0, 4, 5,
            7, 3, 1, 1, 5, 7, 6, 2, 3, 3, 7, 6, 4, 6, 7, 7, 5, 4 };


        /// <summary>
        /// GameMain コンストラクタ
        /// </summary>
        public GameMain()
        {
            // グラフィックデバイス管理クラスの作成
            this.graphics = new GraphicsDeviceManager(this);

            // ゲームコンテンツのルートディレクトリを設定
            this.Content.RootDirectory = "Content";

#if WINDOWS_PHONE
            // Windows Phone のデフォルトのフレームレートは 30 FPS
            this.TargetElapsedTime = TimeSpan.FromTicks(333333);

            // バックバッファサイズの設定
            this.graphics.PreferredBackBufferWidth = 480;
            this.graphics.PreferredBackBufferHeight = 800;

            // フルスクリーン表示
            this.graphics.IsFullScreen = true;
#endif
        }

        /// <summary>
        /// ゲームが始まる前の初期化処理を行うメソッド
        /// グラフィック以外のデータの読み込み、コンポーネントの初期化を行う
        /// </summary>
        protected override void Initialize()
        {
            // TODO: ここに初期化ロジックを書いてください

            // コンポーネントの初期化などを行います
            base.Initialize();
        }

        /// <summary>
        /// ゲームが始まるときに一回だけ呼ばれ
        /// すべてのゲームコンテンツを読み込みます
        /// </summary>
        protected override void LoadContent()
        {
            // テクスチャーを描画するためのスプライトバッチクラスを作成します
            this.spriteBatch = new SpriteBatch(this.GraphicsDevice);

            // エフェクトを作成
            this.basicEffect = new BasicEffect(this.GraphicsDevice);

            // エフェクトでライトを有効にする
            this.basicEffect.LightingEnabled = true;

            // デフォルトのライトの設定を使用する
            this.basicEffect.EnableDefaultLighting();

            // スペキュラーを無効
            this.basicEffect.SpecularColor = Vector3.Zero;

            // 2番目と3番目のライトを無効
            this.basicEffect.DirectionalLight1.Enabled = false;
            this.basicEffect.DirectionalLight2.Enabled = false;


            // ビューマトリックスをあらかじめ設定 ((6, 6, 12) から原点を見る)
            this.basicEffect.View = Matrix.CreateLookAt(
                    new Vector3(6.0f, 6.0f, 12.0f),
                    Vector3.Zero,
                    Vector3.Up
                );

            // プロジェクションマトリックスをあらかじめ設定
            this.basicEffect.Projection = Matrix.CreatePerspectiveFieldOfView(
                    MathHelper.ToRadians(45.0f),
                    (float)this.GraphicsDevice.Viewport.Width /
                        (float)this.GraphicsDevice.Viewport.Height,
                    1.0f,
                    100.0f
                );

            // 頂点の数
            int vertexCount = 8;

            // 頂点バッファ作成
            this.vertexBuffer = new VertexBuffer(this.GraphicsDevice,
                typeof(VertexPositionNormalTexture), vertexCount, BufferUsage.None);

            // 頂点データを作成する
            VertexPositionNormalTexture[] vertives = new VertexPositionNormalTexture[vertexCount];

            vertives[0] = new VertexPositionNormalTexture(
                new Vector3(-2.0f, 2.0f, -2.0f),
                Vector3.Normalize(new Vector3(-1.0f, 1.0f, -1.0f)),
                Vector2.Zero);
            vertives[1] = new VertexPositionNormalTexture(
                new Vector3(2.0f, 2.0f, -2.0f),
                Vector3.Normalize(new Vector3(1.0f, 1.0f, -1.0f)),
                Vector2.Zero);
            vertives[2] = new VertexPositionNormalTexture(
                new Vector3(-2.0f, 2.0f, 2.0f),
                Vector3.Normalize(new Vector3(-1.0f, 1.0f, 1.0f)),
                Vector2.Zero);
            vertives[3] = new VertexPositionNormalTexture(
                new Vector3(2.0f, 2.0f, 2.0f),
                Vector3.Normalize(new Vector3(1.0f, 1.0f, 1.0f)),
                Vector2.Zero);
            vertives[4] = new VertexPositionNormalTexture(
                new Vector3(-2.0f, -2.0f, -2.0f),
                Vector3.Normalize(new Vector3(-1.0f, -1.0f, -1.0f)),
                Vector2.Zero);
            vertives[5] = new VertexPositionNormalTexture(
                new Vector3(2.0f, -2.0f, -2.0f),
                Vector3.Normalize(new Vector3(1.0f, -1.0f, -1.0f)),
                Vector2.Zero);
            vertives[6] = new VertexPositionNormalTexture(
                new Vector3(-2.0f, -2.0f, 2.0f),
                Vector3.Normalize(new Vector3(-1.0f, -1.0f, 1.0f)),
                Vector2.Zero);
            vertives[7] = new VertexPositionNormalTexture(
                new Vector3(2.0f, -2.0f, 2.0f),
                Vector3.Normalize(new Vector3(1.0f, -1.0f, 1.0f)),
                Vector2.Zero);

            // 頂点データを頂点バッファに書き込む
            this.vertexBuffer.SetData(vertives);

            // インデックスバッファを作成
            this.indexBuffer = new IndexBuffer(this.GraphicsDevice,
                IndexElementSize.SixteenBits, 3 * 12, BufferUsage.None);

            // 頂点インデックスを書き込む
            this.indexBuffer.SetData(vertexIndices);
        }

        /// <summary>
        /// ゲームが終了するときに一回だけ呼ばれ
        /// すべてのゲームコンテンツをアンロードします
        /// </summary>
        protected override void UnloadContent()
        {
            // TODO: ContentManager で管理されていないコンテンツを
            //       ここでアンロードしてください
        }

        /// <summary>
        /// 描画以外のデータ更新等の処理を行うメソッド
        /// 主に入力処理、衝突判定などの物理計算、オーディオの再生など
        /// </summary>
        /// <param name="gameTime">このメソッドが呼ばれたときのゲーム時間</param>
        protected override void Update(GameTime gameTime)
        {
            // Xbox 360 コントローラ、Windows Phone の BACK ボタンを押したときに
            // ゲームを終了させます
            if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)
            {
                this.Exit();
            }

            // TODO: ここに更新処理を記述してください

            // 登録された GameComponent を更新する
            base.Update(gameTime);
        }

        /// <summary>
        /// 描画処理を行うメソッド
        /// </summary>
        /// <param name="gameTime">このメソッドが呼ばれたときのゲーム時間</param>
        protected override void Draw(GameTime gameTime)
        {
            // 画面を指定した色でクリアします
            this.GraphicsDevice.Clear(Color.CornflowerBlue);

            // 描画に使用する頂点バッファをセット
            this.GraphicsDevice.SetVertexBuffer(this.vertexBuffer);

            // インデックスバッファをセット
            this.GraphicsDevice.Indices = this.indexBuffer;

            // パスの数だけ繰り替えし描画
            foreach (EffectPass pass in this.basicEffect.CurrentTechnique.Passes)
            {
                // パスの開始
                pass.Apply();

                // ボックスを描画する
                this.GraphicsDevice.DrawIndexedPrimitives(
                    PrimitiveType.TriangleList,
                    0,
                    0,
                    8,
                    0,
                    12
                );
            }

            // 登録された DrawableGameComponent を描画する
            base.Draw(gameTime);
        }
    }
}