Sokszögek rajzolása fényekkel
összefoglalás
A fényeket (fényforrásokat) a sokszögek árnyékolására használják.
Működési környezet
Előfeltételek
Támogatott XNA verziók |
|
Támogatott platformok |
|
Windows Szükséges Vertex Shader verzió | 2.0 |
Windows Szükséges Pixel Shader verzió | 2.01 |
Működési környezet
peron |
|
lényeg
A fényekről
Íme néhány dolog, amit megtehetsz a lámpák használatával kapcsolatban.
anyag
Egyszerűen fogalmazva, az anyag az anyag színe. Az anyagokat gyakran használják a fényekkel együtt, és a BasicEffects lehetővé teszi az anyag- és fényparaméterek beállítását is. Ez azonban nem érvényes, ha saját árnyékoló programot ír, és szabadon beállíthatja. Ne feledje, hogy az anyag színe eltér a csúcsok színétől.
Az anyagok általában a következő elemeket tartalmazzák.
Diffúz | Az anyagok alapszínei |
Környező | A szín színe környezeti fénynek kitéve (akkor is látható, ha a fény nem világít rá közvetlenül) |
Tükröző | Tükröződő visszaverő fény (erősen világít, mint egy autó fénye stb.) |
Tükörerő | Fényvisszaverő szilárdság (spekuláris szilárdság) |
Kibocsátó | Eltérő fény (önmagában világít) |
Fények és normálok
Ha lámpát szeretne használni, szüksége lesz valamire, amit "normálnak" neveznek. A fény normálhoz viszonyított helyzete határozza meg az objektum fényerejét. A normál csúcspontadatként lesz beállítva.
Világosabb, ha az arc a fény irányába néz, és sötétebb, ha fordítva van. Ez akkor is igaz, ha az arc irányát csúcsponttal helyettesíti. Ezeknek az arcoknak és csúcsoknak a tájolását "normálisnak" nevezik.
Most a normálok iránya nincs explicit módon meghatározva, és két fő normálot kell beállítani a mezőben: alább.
Különbség van a bal és a jobb között, amikor a fényt alkalmazzák.
A bal oldali módszer esetében az arcok közötti tér szögletesnek tűnik. Ez azért van, mert teljesen ugyanabba az irányba irányul, mint az arc normálja. Ennek a módszernek azonban az a hátránya, hogy a csúcsokat nem lehet megosztani.
A jobb oldali módszerrel a felületek közötti tér kissé lekerekített lesz, attól függően, hogy a fényt hogyan alkalmazzák. Mivel a csúcsok meg vannak osztva, előnye, hogy csökken az adatok mennyisége. Hátránya, hogy a csúcs normálja nem azonos az arc irányával, így még akkor is, ha a fényt közvetlenül felülről világítják meg, például a felső felületet nem befolyásolja 100% -ban a fény.
Nehéz megérteni, még akkor is, ha egy mondatban magyarázza el, ezért nézze meg az alábbi ábrát, hogy lássa a különbséget.
A Metasequoia nevű modellező szoftverrel jelenik meg
Láthatjuk, hogy megjelenése meglehetősen eltérő. A mintában a megfelelő módon hozzuk létre a mezőt, hogy a kód ne legyen redundáns.
mező
<summary>
基本エフェクト
</summary>
private BasicEffect basicEffect = null;
<summary>
頂点バッファ
</summary>
private VertexBuffer vertexBuffer = null;
<summary>
インデックスバッファ
</summary>
private IndexBuffer indexBuffer = null;
<summary>
インデックスバッファの各頂点番号配列
</summary>
private static readonly Int16[] vertexIndices = new Int16[] {
2, 0, 1, 1, 3, 2, 4, 0, 2, 2, 6, 4, 5, 1, 0, 0, 4, 5,
7, 3, 1, 1, 5, 7, 6, 2, 3, 3, 7, 6, 4, 6, 7, 7, 5, 4 };
A mező egy csúcspontpuffer és egy indexpuffer használatával jön létre.
alkotás
// エフェクトを作成
this.basicEffect = new BasicEffect(this.GraphicsDevice);
// エフェクトでライトを有効にする
this.basicEffect.LightingEnabled = true;
// デフォルトのライトの設定を使用する
this.basicEffect.EnableDefaultLighting();
// スペキュラーを無効
this.basicEffect.SpecularColor = Vector3.Zero;
// 2番目と3番目のライトを無効
this.basicEffect.DirectionalLight1.Enabled = false;
this.basicEffect.DirectionalLight2.Enabled = false;
A BasicEffect számos eleme beállítja a fényt.
Először állítsa a LightingEnabled tulajdonságot true értékre a kiszámítandó fény utasításához.
Az EnableDefaultLighting metódus hívásakor a fény vagy az anyag színe automatikusan beállításra kerül. A doboz alapértelmezett fényének használata azonban túl világos, ezért letiltottam a tükörképet, és letiltottam a második és a harmadik lámpát.
// 頂点の数
int vertexCount = 8;
// 頂点バッファ作成
this.vertexBuffer = new VertexBuffer(this.GraphicsDevice,
typeof(VertexPositionNormalTexture), vertexCount, BufferUsage.None);
// 頂点データを作成する
VertexPositionNormalTexture[] vertives = new VertexPositionNormalTexture[vertexCount];
vertives[0] = new VertexPositionNormalTexture(
new Vector3(-2.0f, 2.0f, -2.0f),
Vector3.Normalize(new Vector3(-1.0f, 1.0f, -1.0f)),
Vector2.Zero);
vertives[1] = new VertexPositionNormalTexture(
new Vector3(2.0f, 2.0f, -2.0f),
Vector3.Normalize(new Vector3(1.0f, 1.0f, -1.0f)),
Vector2.Zero);
vertives[2] = new VertexPositionNormalTexture(
new Vector3(-2.0f, 2.0f, 2.0f),
Vector3.Normalize(new Vector3(-1.0f, 1.0f, 1.0f)),
Vector2.Zero);
vertives[3] = new VertexPositionNormalTexture(
new Vector3(2.0f, 2.0f, 2.0f),
Vector3.Normalize(new Vector3(1.0f, 1.0f, 1.0f)),
Vector2.Zero);
vertives[4] = new VertexPositionNormalTexture(
new Vector3(-2.0f, -2.0f, -2.0f),
Vector3.Normalize(new Vector3(-1.0f, -1.0f, -1.0f)),
Vector2.Zero);
vertives[5] = new VertexPositionNormalTexture(
new Vector3(2.0f, -2.0f, -2.0f),
Vector3.Normalize(new Vector3(1.0f, -1.0f, -1.0f)),
Vector2.Zero);
vertives[6] = new VertexPositionNormalTexture(
new Vector3(-2.0f, -2.0f, 2.0f),
Vector3.Normalize(new Vector3(-1.0f, -1.0f, 1.0f)),
Vector2.Zero);
vertives[7] = new VertexPositionNormalTexture(
new Vector3(2.0f, -2.0f, 2.0f),
Vector3.Normalize(new Vector3(1.0f, -1.0f, 1.0f)),
Vector2.Zero);
// 頂点データを頂点バッファに書き込む
this.vertexBuffer.SetData(vertives);
Ez egy kicsit hosszú kód, de csúcspontadatokat hoz létre. Az ezúttal használt csúcspontadat-struktúra a "VertexPositionNormalTexture" a "position", "normal" és "texture coordinates" adatokkal. Mivel az XNA keretrendszer nem biztosít csak "pozíció" és "normál" struktúrát, a "Vector2.Zero" a textúra koordinátáinak minden csúcsához meg van adva. (Természetesen, ha megérted, elkészítheted a saját struktúrádat.)
Ami a normál, amint az az előző ábrán látható, ferde irányba mutat. Mivel a normálok olyan adatdefiníciók, amelyeket csak tájolás képvisel, az irány meg van adva, majd normalizálódik a Vector3.Normalize metódussal.
VertexPositionNormalTexture
Konstruktor
Hozzon létre egy példányt a "VertexPositionNormalTexture" struktúrából a pozíció, valamint a normál és textúra koordináták csúcspontadataival.
pozíció | Vektor3 | Csúcspont pozíciója |
normális | Vektor3 | Csúcspont normáljai |
textúraKoordináta | Vektor2 | A csúcsok textúra koordinátái |
Vector3.Normalize
módszer
Egységvektort hoz létre a megadott vektorból.
érték | Vektor3 | Normalizálandó forrásvektor |
Visszatérési értékek | Vektor3 | Egységvektor |
// インデックスバッファを作成
this.indexBuffer = new IndexBuffer(this.GraphicsDevice,
IndexElementSize.SixteenBits, 3 * 12, BufferUsage.None);
// 頂点インデックスを書き込む
this.indexBuffer.SetData(vertexIndices);
Az indexpuffer létrehozása sem különbözik ettől.
rajz
// 描画に使用する頂点バッファをセット
this.GraphicsDevice.SetVertexBuffer(this.vertexBuffer);
// インデックスバッファをセット
this.GraphicsDevice.Indices = this.indexBuffer;
// パスの数だけ繰り替えし描画
foreach (EffectPass pass in this.basicEffect.CurrentTechnique.Passes)
{
// パスの開始
pass.Apply();
// ボックスを描画する
this.GraphicsDevice.DrawIndexedPrimitives(
PrimitiveType.TriangleList,
0,
0,
8,
0,
12
);
}
Mivel a csúcspont információi előre be vannak állítva, a rajzkódban nincs semmi különös.
Minden kód
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Audio;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.GamerServices;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
using Microsoft.Xna.Framework.Media;
#if WINDOWS_PHONE
using Microsoft.Xna.Framework.Input.Touch;
#endif
namespace BoxReceivedLight
{
<summary>
ゲームメインクラス
</summary>
public class GameMain : Microsoft.Xna.Framework.Game
{
<summary>
グラフィックデバイス管理クラス
</summary>
private GraphicsDeviceManager graphics = null;
<summary>
スプライトのバッチ化クラス
</summary>
private SpriteBatch spriteBatch = null;
<summary>
基本エフェクト
</summary>
private BasicEffect basicEffect = null;
<summary>
頂点バッファ
</summary>
private VertexBuffer vertexBuffer = null;
<summary>
インデックスバッファ
</summary>
private IndexBuffer indexBuffer = null;
<summary>
インデックスバッファの各頂点番号配列
</summary>
private static readonly Int16[] vertexIndices = new Int16[] {
2, 0, 1, 1, 3, 2, 4, 0, 2, 2, 6, 4, 5, 1, 0, 0, 4, 5,
7, 3, 1, 1, 5, 7, 6, 2, 3, 3, 7, 6, 4, 6, 7, 7, 5, 4 };
<summary>
GameMain コンストラクタ
</summary>
public GameMain()
{
// グラフィックデバイス管理クラスの作成
this.graphics = new GraphicsDeviceManager(this);
// ゲームコンテンツのルートディレクトリを設定
this.Content.RootDirectory = "Content";
#if WINDOWS_PHONE
// Windows Phone のデフォルトのフレームレートは 30 FPS
this.TargetElapsedTime = TimeSpan.FromTicks(333333);
// バックバッファサイズの設定
this.graphics.PreferredBackBufferWidth = 480;
this.graphics.PreferredBackBufferHeight = 800;
// フルスクリーン表示
this.graphics.IsFullScreen = true;
#endif
}
<summary>
ゲームが始まる前の初期化処理を行うメソッド
グラフィック以外のデータの読み込み、コンポーネントの初期化を行う
</summary>
protected override void Initialize()
{
// TODO: ここに初期化ロジックを書いてください
// コンポーネントの初期化などを行います
base.Initialize();
}
<summary>
ゲームが始まるときに一回だけ呼ばれ
すべてのゲームコンテンツを読み込みます
</summary>
protected override void LoadContent()
{
// テクスチャーを描画するためのスプライトバッチクラスを作成します
this.spriteBatch = new SpriteBatch(this.GraphicsDevice);
// エフェクトを作成
this.basicEffect = new BasicEffect(this.GraphicsDevice);
// エフェクトでライトを有効にする
this.basicEffect.LightingEnabled = true;
// デフォルトのライトの設定を使用する
this.basicEffect.EnableDefaultLighting();
// スペキュラーを無効
this.basicEffect.SpecularColor = Vector3.Zero;
// 2番目と3番目のライトを無効
this.basicEffect.DirectionalLight1.Enabled = false;
this.basicEffect.DirectionalLight2.Enabled = false;
// ビューマトリックスをあらかじめ設定 ((6, 6, 12) から原点を見る)
this.basicEffect.View = Matrix.CreateLookAt(
new Vector3(6.0f, 6.0f, 12.0f),
Vector3.Zero,
Vector3.Up
);
// プロジェクションマトリックスをあらかじめ設定
this.basicEffect.Projection = Matrix.CreatePerspectiveFieldOfView(
MathHelper.ToRadians(45.0f),
(float)this.GraphicsDevice.Viewport.Width /
(float)this.GraphicsDevice.Viewport.Height,
1.0f,
100.0f
);
// 頂点の数
int vertexCount = 8;
// 頂点バッファ作成
this.vertexBuffer = new VertexBuffer(this.GraphicsDevice,
typeof(VertexPositionNormalTexture), vertexCount, BufferUsage.None);
// 頂点データを作成する
VertexPositionNormalTexture[] vertives = new VertexPositionNormalTexture[vertexCount];
vertives[0] = new VertexPositionNormalTexture(
new Vector3(-2.0f, 2.0f, -2.0f),
Vector3.Normalize(new Vector3(-1.0f, 1.0f, -1.0f)),
Vector2.Zero);
vertives[1] = new VertexPositionNormalTexture(
new Vector3(2.0f, 2.0f, -2.0f),
Vector3.Normalize(new Vector3(1.0f, 1.0f, -1.0f)),
Vector2.Zero);
vertives[2] = new VertexPositionNormalTexture(
new Vector3(-2.0f, 2.0f, 2.0f),
Vector3.Normalize(new Vector3(-1.0f, 1.0f, 1.0f)),
Vector2.Zero);
vertives[3] = new VertexPositionNormalTexture(
new Vector3(2.0f, 2.0f, 2.0f),
Vector3.Normalize(new Vector3(1.0f, 1.0f, 1.0f)),
Vector2.Zero);
vertives[4] = new VertexPositionNormalTexture(
new Vector3(-2.0f, -2.0f, -2.0f),
Vector3.Normalize(new Vector3(-1.0f, -1.0f, -1.0f)),
Vector2.Zero);
vertives[5] = new VertexPositionNormalTexture(
new Vector3(2.0f, -2.0f, -2.0f),
Vector3.Normalize(new Vector3(1.0f, -1.0f, -1.0f)),
Vector2.Zero);
vertives[6] = new VertexPositionNormalTexture(
new Vector3(-2.0f, -2.0f, 2.0f),
Vector3.Normalize(new Vector3(-1.0f, -1.0f, 1.0f)),
Vector2.Zero);
vertives[7] = new VertexPositionNormalTexture(
new Vector3(2.0f, -2.0f, 2.0f),
Vector3.Normalize(new Vector3(1.0f, -1.0f, 1.0f)),
Vector2.Zero);
// 頂点データを頂点バッファに書き込む
this.vertexBuffer.SetData(vertives);
// インデックスバッファを作成
this.indexBuffer = new IndexBuffer(this.GraphicsDevice,
IndexElementSize.SixteenBits, 3 * 12, BufferUsage.None);
// 頂点インデックスを書き込む
this.indexBuffer.SetData(vertexIndices);
}
<summary>
ゲームが終了するときに一回だけ呼ばれ
すべてのゲームコンテンツをアンロードします
</summary>
protected override void UnloadContent()
{
// TODO: ContentManager で管理されていないコンテンツを
// ここでアンロードしてください
}
<summary>
描画以外のデータ更新等の処理を行うメソッド
主に入力処理、衝突判定などの物理計算、オーディオの再生など
</summary>
<param name="gameTime">このメソッドが呼ばれたときのゲーム時間</param>
protected override void Update(GameTime gameTime)
{
// Xbox 360 コントローラ、Windows Phone の BACK ボタンを押したときに
// ゲームを終了させます
if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)
{
this.Exit();
}
// TODO: ここに更新処理を記述してください
// 登録された GameComponent を更新する
base.Update(gameTime);
}
<summary>
描画処理を行うメソッド
</summary>
<param name="gameTime">このメソッドが呼ばれたときのゲーム時間</param>
protected override void Draw(GameTime gameTime)
{
// 画面を指定した色でクリアします
this.GraphicsDevice.Clear(Color.CornflowerBlue);
// 描画に使用する頂点バッファをセット
this.GraphicsDevice.SetVertexBuffer(this.vertexBuffer);
// インデックスバッファをセット
this.GraphicsDevice.Indices = this.indexBuffer;
// パスの数だけ繰り替えし描画
foreach (EffectPass pass in this.basicEffect.CurrentTechnique.Passes)
{
// パスの開始
pass.Apply();
// ボックスを描画する
this.GraphicsDevice.DrawIndexedPrimitives(
PrimitiveType.TriangleList,
0,
0,
8,
0,
12
);
}
// 登録された DrawableGameComponent を描画する
base.Draw(gameTime);
}
}
}